請(qǐng)點(diǎn)擊全屏查看
2016丹東市東港中考數(shù)學(xué)一模試卷
一、選擇題(下列各題的備選答案中,只有一個(gè)是正確的.每小題3分,共24分)
1.﹣2015的絕對(duì)值是( ?。?/p>
A.﹣2015????????????? B.2015????????????? C.
????????????? D.﹣![]()
2.據(jù)統(tǒng)計(jì),2015年在“情系桃源,好運(yùn)丹東”的鴨綠江桃花觀賞活動(dòng)中,6天內(nèi)參與人次達(dá)27.8萬.用科學(xué)記數(shù)法將27.8萬表示為( ?。?/p>
A.2.78×106????????????? B.27.8×106????????????? C.2.78×105????????????? D.27.8×105
3.(2016丹東數(shù)學(xué))如圖,是某幾何體的俯視圖,該幾何體可能是( ?。?/p>

A.圓柱????????????? B.圓錐????????????? C.球????????????? D.正方體
4.如果一組數(shù)據(jù)2,4,x,3,5的眾數(shù)是4,那么該組數(shù)據(jù)的平均數(shù)是( ?。?/p>
A.5.2????????????? B.4.6????????????? C.4????????????? D.3.6
5.下列計(jì)算正確的是( )
A.2a+a=3a2????????????? B.4﹣2=﹣
????????????? C.
=±3????????????? D.(a3)2=a6
6.(2016丹東數(shù)學(xué))如圖,在△ABC中,AB=AC,∠A=30°,E為BC延長(zhǎng)線上一點(diǎn),∠ABC與∠ACE的平分線相交于點(diǎn)D,則∠D的度數(shù)為( ?。?/p>

A.15°????????????? B.17.5°????????????? C.20°????????????? D.22.5°
7.過矩形ABCD的對(duì)角線AC的中點(diǎn)O作EF⊥AC,交BC邊于點(diǎn)E,交AD邊于點(diǎn)F,分別連接AE、CF.若AB=
,∠DCF=30°,則EF的長(zhǎng)為( )

A.2????????????? B.3????????????? C.
????????????? D.![]()
9.一次函數(shù)y=﹣x+a﹣3(a為常數(shù))與反比例函數(shù)y=﹣
的圖象交于A、B兩點(diǎn),當(dāng)A、B兩點(diǎn)關(guān)于原點(diǎn)對(duì)稱時(shí)a的值是( ?。?/p>
A.0????????????? B.﹣3????????????? C.3????????????? D.4
二、填空題
10.(2016丹東數(shù)學(xué))如圖,正六邊形卡片被分成六個(gè)全等的正三角形.若向該六邊形內(nèi)投擲飛鏢,則飛鏢落在陰影區(qū)域的概率為 ?。?/p>

11.如圖,∠1=∠2=40°,MN平分∠EMB,則∠3= °.

12.分解因式:3x2﹣12x+12= ?。?/p>
13.若a<
<b,且a、b是兩個(gè)連續(xù)的整數(shù),則ab= ?。?/p>
14.(2016丹東數(shù)學(xué))不等式組
的解集為 ?。?/p>
15.在菱形ABCD中,對(duì)角線AC,BD的長(zhǎng)分別是6和8,則菱形的周長(zhǎng)是 .
16.若x=1是一元二次方程x2+2x+a=0的一個(gè)根,那么a= .
17.如圖,直線OD與x軸所夾的銳角為30°,OA1的長(zhǎng)為1,△A1A2B1、△A2A3B2、△A3A4B3…△AnAn+1Bn均為等邊三角形,點(diǎn)A1、A2、A3…An+1在x軸的正半軸上依次排列,點(diǎn)B1、B2、B3…Bn在直線OD上依次排列,那么點(diǎn)Bn的坐標(biāo)為 ?。?/p>

三、(2016丹東數(shù)學(xué))解答題
18.先化簡(jiǎn),再求值:(1﹣
)÷
,其中a=3.
19.如圖,在平面直角坐標(biāo)系中,△ABC的三個(gè)頂點(diǎn)坐標(biāo)分別為A(1,4),B(4,2),C(3,5)
20.某中學(xué)數(shù)學(xué)興趣小組為了解本校學(xué)生對(duì)電視節(jié)目的喜愛情況,隨機(jī)調(diào)查了部分學(xué)生最喜愛哪一類節(jié)目 (被調(diào)查的學(xué)生只選一類并且沒有不選擇的),并將調(diào)查結(jié)果制成了如下的兩個(gè)統(tǒng)計(jì)圖(不完整).請(qǐng)你根據(jù)圖中所提供的信息,完成下列問題:
(1)求本次調(diào)查的學(xué)生人數(shù);
(2)請(qǐng)將兩個(gè)統(tǒng)計(jì)圖補(bǔ)充完整,并求出新聞節(jié)目在扇形統(tǒng)計(jì)圖中所占圓心角的度數(shù);
(3)若該中學(xué)有2000名學(xué)生,請(qǐng)估計(jì)該校喜愛電視劇節(jié)目的人數(shù).

21.(2016丹東數(shù)學(xué))從甲市到乙市乘坐高速列車的路程為180千米,乘坐普通列車的路程為240千米.高速列車的平均速度是普通列車的平均速度的3倍.高速列車的乘車時(shí)間比普通列車的乘車時(shí)間縮短了2小時(shí).高速列車的平均速度是每小時(shí)多少千米?
五、
22.一個(gè)不透明的口袋中裝有4個(gè)分別標(biāo)有數(shù)字﹣1,﹣2,3,4的小球,它們的形狀、大小完全相同.小紅先從口袋中隨機(jī)摸出一個(gè)小球記下數(shù)字為x;小穎在剩下的3個(gè)小球中隨機(jī)摸出一個(gè)小球記下數(shù)字為y.
(1)小紅摸出標(biāo)有數(shù)字3的小球的概率是 ?。?/p>
(2)請(qǐng)用列表法或畫樹狀圖的方法表示出由x,y確定的點(diǎn)P(x,y)所有可能的結(jié)果;
(3)若規(guī)定:點(diǎn)P(x,y)在第一象限或第三象限小紅獲勝;點(diǎn)P(x,y)在第二象限或第四象限則小穎獲勝.請(qǐng)分別求出兩人獲勝的概率.
23.(2016丹東數(shù)學(xué))如圖,AB是⊙O的直徑,
=
,連接ED、BD,延長(zhǎng)AE交BD的延長(zhǎng)線于點(diǎn)M,過點(diǎn)D作⊙O的切線交AB的延長(zhǎng)線于點(diǎn)C.
(1)若OA=CD=2
,求陰影部分的面積;
(2)求證:DE=DM.

六、
24.(2016丹東數(shù)學(xué))如圖,線段AB,CD表示甲、乙兩幢居民樓的高,兩樓間的距離BD是60米.某人站在A處測(cè)得C點(diǎn)的俯角為37°,D點(diǎn)的俯角為48°(人的身高忽略不計(jì)),求乙樓的高度CD.(參考數(shù)據(jù):sin37°≈
,tan37°≈
,sin48°≈
,tan48°≈
)

25.某商店購(gòu)進(jìn)一種商品,每件商品進(jìn)價(jià)30元.試銷中發(fā)現(xiàn)這種商品每天的銷售量y(件)與每件銷售價(jià)x(元)的關(guān)系數(shù)據(jù)如下:
x | 30 | 32 | 34 | 36 |
y | 40 | 36 | 32 | 28 |
(1)已知y與x滿足一次函數(shù)關(guān)系,根據(jù)上表,求出y與x之間的關(guān)系式(不寫出自變量x的取值范圍);
(2)如果商店銷售這種商品,每天要獲得150元利潤(rùn),那么每件商品的銷售價(jià)應(yīng)定為多少元?
(3)設(shè)該商店每天銷售這種商品所獲利潤(rùn)為w(元),求出w與x之間的關(guān)系式,并求出每件商品銷售價(jià)定為多少元時(shí)利潤(rùn)最大?
七、(2016丹東數(shù)學(xué))(本題12分)
26.在正方形ABCD中,對(duì)角線AC與BD交于點(diǎn)O;在Rt△PMN中,∠MPN=90°.
(1)如圖1,若點(diǎn)P與點(diǎn)O重合且PM⊥AD、PN⊥AB,分別交AD、AB于點(diǎn)E、F,請(qǐng)直接寫出PE與PF的數(shù)量關(guān)系;
(2)將圖1中的Rt△PMN繞點(diǎn)O順時(shí)針旋轉(zhuǎn)角度α(0°<α<45°).
①如圖2,在旋轉(zhuǎn)過程中(1)中的結(jié)論依然成立嗎?若成立,請(qǐng)證明;若不成立,請(qǐng)說明理由;
②如圖2,在旋轉(zhuǎn)過程中,當(dāng)∠DOM=15°時(shí),連接EF,若正方形的邊長(zhǎng)為2,請(qǐng)直接寫出線段EF的長(zhǎng);
③如圖3,旋轉(zhuǎn)后,若Rt△PMN的頂點(diǎn)P在線段OB上移動(dòng)(不與點(diǎn)O、B重合),當(dāng)BD=3BP時(shí),猜想此時(shí)PE與PF的數(shù)量關(guān)系,并給出證明;當(dāng)BD=m?BP時(shí),請(qǐng)直接寫出PE與PF的數(shù)量關(guān)系.

八、(2016丹東數(shù)學(xué))(本題14分)
27.如圖,已知二次函數(shù)y=ax2+
x+c的圖象與y軸交于點(diǎn)A(0,4),與x軸交于點(diǎn)B、C,點(diǎn)C坐標(biāo)為(8,0),連接AB、AC.
(1)請(qǐng)直接寫出二次函數(shù)y=ax2+
x+c的表達(dá)式;
(2)判斷△ABC的形狀,并說明理由;
(3)若點(diǎn)N在x軸上運(yùn)動(dòng),當(dāng)以點(diǎn)A、N、C為頂點(diǎn)的三角形是等腰三角形時(shí),請(qǐng)直接寫出此時(shí)點(diǎn)N的坐標(biāo);
(4)若點(diǎn)N在線段BC上運(yùn)動(dòng)(不與點(diǎn)B、C重合),過點(diǎn)N作NM∥AC,交AB于點(diǎn)M,當(dāng)△AMN面積最大時(shí),求此時(shí)點(diǎn)N的坐標(biāo).

2016丹東數(shù)學(xué)參考答案與試題解析
一、選擇題(下列各題的備選答案中,只有一個(gè)是正確的.每小題3分,共24分)
1.﹣2015的絕對(duì)值是( ?。?/p>
A.﹣2015????????????? B.2015????????????? C.
????????????? D.﹣![]()
【考點(diǎn)】絕對(duì)值.
【分析】根據(jù)相反數(shù)的意義,求解即可.注意正數(shù)的絕對(duì)值是本身,0的絕對(duì)值為0,負(fù)數(shù)的絕對(duì)值是其相反數(shù).
【解答】解:∵﹣2015的絕對(duì)值等于其相反數(shù),
∴﹣2015的絕對(duì)值是2015;
故答案為:2015.
【點(diǎn)評(píng)】此題考查了絕對(duì)值的知識(shí),掌握絕對(duì)值的意義是本題的關(guān)鍵,解題時(shí)要細(xì)心.
2.(2016丹東數(shù)學(xué))據(jù)統(tǒng)計(jì),2015年在“情系桃源,好運(yùn)丹東”的鴨綠江桃花觀賞活動(dòng)中,6天內(nèi)參與人次達(dá)27.8萬.用科學(xué)記數(shù)法將27.8萬表示為( )
A.2.78×106????????????? B.27.8×106????????????? C.2.78×105????????????? D.27.8×105
【考點(diǎn)】科學(xué)記數(shù)法—表示較大的數(shù).
【分析】科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時(shí),要看把原數(shù)變成a時(shí),小數(shù)點(diǎn)移動(dòng)了多少位,n的絕對(duì)值與小數(shù)點(diǎn)移動(dòng)的位數(shù)相同.當(dāng)原數(shù)絕對(duì)值>1時(shí),n是正數(shù);當(dāng)原數(shù)的絕對(duì)值<1時(shí),n是負(fù)數(shù).
【解答】解:將27.8萬用科學(xué)記數(shù)法表示為2.78×105.
故選:C.
【點(diǎn)評(píng)】此題考查科學(xué)記數(shù)法的表示方法.科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時(shí)關(guān)鍵要正確確定a的值以及n的值.
3.(2016丹東數(shù)學(xué))如圖,是某幾何體的俯視圖,該幾何體可能是( ?。?/p>

A.圓柱????????????? B.圓錐????????????? C.球????????????? D.正方體
【考點(diǎn)】由三視圖判斷幾何體.
【分析】根據(jù)幾何體的俯視圖是從上面看,所得到的圖形分別寫出各個(gè)幾何體的俯視圖判斷即可.
【解答】解:圓柱的俯視圖是圓,A錯(cuò)誤;
圓錐的俯視圖是圓,且中心由一個(gè)實(shí)點(diǎn),B正確;
球的俯視圖是圓,C錯(cuò)誤;
正方體的俯視圖是正方形,D錯(cuò)誤.
故選:B.
【點(diǎn)評(píng)】本題考查了三視圖的概念,掌握主視圖、左視圖、俯視圖是分別從物體正面、左面和上面看,所得到的圖形是解題的關(guān)鍵.
4.如果一組數(shù)據(jù)2,4,x,3,5的眾數(shù)是4,那么該組數(shù)據(jù)的平均數(shù)是( ?。?/p>
A.5.2????????????? B.4.6????????????? C.4????????????? D.3.6
【考點(diǎn)】算術(shù)平均數(shù);眾數(shù).
【分析】根據(jù)這組數(shù)據(jù)的眾數(shù)是4,求出x的值,根據(jù)平均數(shù)的公式求出平均數(shù).
【解答】解:∵這組數(shù)據(jù)的眾數(shù)是4,
∴x=4,
=
(2+4+4+3+5)=3.6.
故選:D.
【點(diǎn)評(píng)】本題考查的是平均數(shù)的計(jì)算公式和眾數(shù)的概念,掌握平均數(shù)的計(jì)算公式和眾數(shù)的確定方法是解題的關(guān)鍵.
5.(2016丹東數(shù)學(xué))下列計(jì)算正確的是( ?。?/p>
A.2a+a=3a2????????????? B.4﹣2=﹣
????????????? C.
=±3????????????? D.(a3)2=a6
【考點(diǎn)】?jī)绲某朔脚c積的乘方;算術(shù)平方根;合并同類項(xiàng);負(fù)整數(shù)指數(shù)冪.
【分析】A、依據(jù)合并同類項(xiàng)法則計(jì)算即可;B、根據(jù)負(fù)整數(shù)指數(shù)冪的法則計(jì)算即可;C、根據(jù)算術(shù)平方根的定義可做出判斷;D、依據(jù)冪的乘方的運(yùn)算法則進(jìn)行計(jì)算即可.
【解答】解:A、2a+a=3a,故A錯(cuò)誤;
B、4﹣2=
=
,故B錯(cuò)誤;
C、
,故C錯(cuò)誤;
D、(a3)2=a3×2=a6,故D正確.
故選:D.
【點(diǎn)評(píng)】本題主要考查的是數(shù)與式的計(jì)算,掌握合并同類項(xiàng)、負(fù)整數(shù)指數(shù)冪、算術(shù)平方根以及冪的乘方的運(yùn)算法則是解題的關(guān)鍵.
6(2016丹東數(shù)學(xué)).如圖,在△ABC中,AB=AC,∠A=30°,E為BC延長(zhǎng)線上一點(diǎn),∠ABC與∠ACE的平分線相交于點(diǎn)D,則∠D的度數(shù)為( ?。?/p>

A.15°????????????? B.17.5°????????????? C.20°????????????? D.22.5°
【考點(diǎn)】等腰三角形的性質(zhì).
【分析】先根據(jù)角平分線的定義得到∠1=∠2,∠3=∠4,再根據(jù)三角形外角性質(zhì)得∠1+∠2=∠3+∠4+∠A,∠1=∠3+∠D,則2∠1=2∠3+∠A,利用等式的性質(zhì)得到∠D=
∠A,然后把∠A的度數(shù)代入計(jì)算即可.
【解答】解:∵∠ABC的平分線與∠ACE的平分線交于點(diǎn)D,

∴∠1=∠2,∠3=∠4,
∵∠ACE=∠A+∠ABC,
即∠1+∠2=∠3+∠4+∠A,
∴2∠1=2∠3+∠A,
∵∠1=∠3+∠D,
∴∠D=
∠A=
×30°=15°.
故選A.
【點(diǎn)評(píng)】(2016丹東數(shù)學(xué))本題考查了三角形內(nèi)角和定理,關(guān)鍵是根據(jù)三角形內(nèi)角和是180°和三角形外角性質(zhì)進(jìn)行分析.
7.過矩形ABCD的對(duì)角線AC的中點(diǎn)O作EF⊥AC,交BC邊于點(diǎn)E,交AD邊于點(diǎn)F,分別連接AE、CF.若AB=
,∠DCF=30°,則EF的長(zhǎng)為( ?。?/p>

A.2????????????? B.3????????????? C.
????????????? D.![]()
【考點(diǎn)】菱形的判定與性質(zhì);矩形的性質(zhì).
【分析】求出∠ACB=∠DAC,然后利用“角角邊”證明△AOF和△COE全等,根據(jù)全等三角形對(duì)應(yīng)邊相等可得OE=OF,再根據(jù)對(duì)角線互相垂直平分的四邊形是菱形得到四邊形AECF是菱形,再求出∠ECF=60°,然后判斷出△CEF是等邊三角形,根據(jù)等邊三角形的三條邊都相等可得EF=CF,根據(jù)矩形的對(duì)邊相等可得CD=AB,然后求出CF,從而得解.
【解答】(2016丹東數(shù)學(xué))解:∵矩形對(duì)邊AD∥BC,
∴∠ACB=∠DAC,
∵O是AC的中點(diǎn),
∴AO=CO,
在△AOF和△COE中,
,
∴△AOF≌△COE(ASA),
∴OE=OF,
又∵EF⊥AC,
∴四邊形AECF是菱形,
∵∠DCF=30°,
∴∠ECF=90°﹣30°=60°,
∴△CEF是等邊三角形,
∴EF=CF,
∵AB=
,
∴CD=AB=
,
∵∠DCF=30°,
∴CF=
÷
=2,
∴EF=2.
故選A.
【點(diǎn)評(píng)】本題考查了菱形的判定與性質(zhì),矩形的性質(zhì),全等三角形的判定與性質(zhì),等邊三角形的判定與性質(zhì),難點(diǎn)在于判斷出△CEF是等邊三角形.
9.(2016丹東數(shù)學(xué))一次函數(shù)y=﹣x+a﹣3(a為常數(shù))與反比例函數(shù)y=﹣
的圖象交于A、B兩點(diǎn),當(dāng)A、B兩點(diǎn)關(guān)于原點(diǎn)對(duì)稱時(shí)a的值是( )
A.0????????????? B.﹣3????????????? C.3????????????? D.4
【考點(diǎn)】反比例函數(shù)與一次函數(shù)的交點(diǎn)問題;關(guān)于原點(diǎn)對(duì)稱的點(diǎn)的坐標(biāo).
【專題】計(jì)算題;壓軸題.
【分析】設(shè)A(t,﹣
),根據(jù)關(guān)于原點(diǎn)對(duì)稱的點(diǎn)的坐標(biāo)特征得B(﹣t,
),然后把A(t,﹣
),B(﹣t,
)分別代入y=﹣x+a﹣3得﹣
=﹣t+a﹣3,
=t+a﹣3,兩式相加消去t得2a﹣6=0,再解關(guān)于a的一次方程即可.
【解答】解:設(shè)A(t,﹣
),
∵A、B兩點(diǎn)關(guān)于原點(diǎn)對(duì)稱,
∴B(﹣t,
),
把A(t,﹣
),B(﹣t,
)分別代入y=﹣x+a﹣3得﹣
=﹣t+a﹣3,
=t+a﹣3,
兩式相加得2a﹣6=0,
∴a=3.
故選C.
【點(diǎn)評(píng)】本題考查了反比例函數(shù)與一次函數(shù)的交點(diǎn)問題:求反比例函數(shù)與一次函數(shù)的交點(diǎn)坐標(biāo),把兩個(gè)函數(shù)關(guān)系式聯(lián)立成方程組求解,若方程組有解則兩者有交點(diǎn),方程組無解,則兩者無交點(diǎn).
二、(2016丹東數(shù)學(xué))填空題
10.如圖,正六邊形卡片被分成六個(gè)全等的正三角形.若向該六邊形內(nèi)投擲飛鏢,則飛鏢落在陰影區(qū)域的概率為
?。?/p>

【考點(diǎn)】幾何概率.
【分析】確定陰影部分的面積在整個(gè)轉(zhuǎn)盤中占的比例,根據(jù)這個(gè)比例即可求出飛鏢落在陰影區(qū)域的概率.
【解答】解:如圖:轉(zhuǎn)動(dòng)轉(zhuǎn)盤被均勻分成6部分,陰影部分占2份,飛鏢落在陰影區(qū)域的概率是
;
故答案為:
.
【點(diǎn)評(píng)】本題考查了幾何概率.用到的知識(shí)點(diǎn)為:概率=相應(yīng)的面積與總面積之比.
11.(2016丹東數(shù)學(xué))如圖,∠1=∠2=40°,MN平分∠EMB,則∠3= 110 °.

【考點(diǎn)】平行線的判定與性質(zhì).
【分析】根據(jù)對(duì)頂角相等得出∠2=∠MEN,利用同位角相等,兩直線平行得出AB∥CD,再利用平行線的性質(zhì)解答即可.
【解答】解:∵∠2=∠MEN,∠1=∠2=40°,
∴∠1=∠MEN,
∴AB∥CD,
∴∠3+∠BMN=180°,
∵M(jìn)N平分∠EMB,
∴∠BMN=
,
∴∠3=180°﹣70°=110°.
故答案為:110.
【點(diǎn)評(píng)】本題考查了平行線的性質(zhì),角平分線的定義,是基礎(chǔ)題,熟記性質(zhì)并準(zhǔn)確識(shí)圖是解題的關(guān)鍵.
12.(2016丹東數(shù)學(xué))分解因式:3x2﹣12x+12= 3(x﹣2)2 .
【考點(diǎn)】提公因式法與公式法的綜合運(yùn)用.
【專題】計(jì)算題.
【分析】原式提取3后,利用完全平方公式分解即可.
【解答】解:原式=3(x2﹣4x+4)=3(x﹣2)2,
故答案為:3(x﹣2)2
【點(diǎn)評(píng)】此題考查了提公因式法與公式法的綜合運(yùn)用,熟練掌握因式分解的方法是解本題的關(guān)鍵.
13.若a<
<b,且a、b是兩個(gè)連續(xù)的整數(shù),則ab= 8?。?/p>
【考點(diǎn)】估算無理數(shù)的大小.
【分析】先估算出
的范圍,即可得出a、b的值,代入求出即可.
【解答】解:∵2<
<3,
∴a=2,b=3,
∴ab=8.
故答案為:8.
【點(diǎn)評(píng)】(2016丹東數(shù)學(xué))本題考查了估算無理數(shù)的大小的應(yīng)用,解此題的關(guān)鍵是求出
的范圍.
14.不等式組
的解集為 ﹣1<x<1?。?/p>
【考點(diǎn)】解一元一次不等式組.
【分析】先求出兩個(gè)不等式的解集,再求其公共解.
【解答】解:
,
由①得,x>﹣1,
由②得,x<1.
所以,不等式組的解集為﹣1<x<1.
故答案為﹣1<x<1.
【點(diǎn)評(píng)】本題主要考查了一元一次不等式組解集的求法,其簡(jiǎn)便求法就是用口訣求解.求不等式組解集的口訣:同大取大,同小取小,大小小大中間找,大大小小找不到(無解).
15.(2016丹東數(shù)學(xué))在菱形ABCD中,對(duì)角線AC,BD的長(zhǎng)分別是6和8,則菱形的周長(zhǎng)是 20?。?/p>
【考點(diǎn)】菱形的性質(zhì).
【專題】計(jì)算題.
【分析】AC與BD相交于點(diǎn)O,如圖,根據(jù)菱形的性質(zhì)得AC⊥BD,OD=OB=
BD=4,OA=OC=
AC=3,AB=BC=CD=AD,則可在Rt△AOD中,根據(jù)勾股定理計(jì)算出AD=5,于是可得菱形ABCD的周長(zhǎng)為20.
【解答】解:AC與BD相交于點(diǎn)O,如圖,
∵四邊形ABCD為菱形,
∴AC⊥BD,OD=OB=
BD=4,OA=OC=
AC=3,AB=BC=CD=AD,
在Rt△AOD中,∵OA=3,OB=4,
∴AD=
=5,
∴菱形ABCD的周長(zhǎng)=4×5=20.
故答案為20.

【點(diǎn)評(píng)】本題考查了菱形的性質(zhì):菱形具有平行四邊形的一切性質(zhì);菱形的四條邊都相等;菱形的兩條對(duì)角線互相垂直,并且每一條對(duì)角線平分一組對(duì)角;菱形是軸對(duì)稱圖形,它有2條對(duì)稱軸,分別是兩條對(duì)角線所在直線.
16.(2016丹東數(shù)學(xué))若x=1是一元二次方程x2+2x+a=0的一個(gè)根,那么a= ﹣3 .
【考點(diǎn)】一元二次方程的解.
【分析】根據(jù)方程的根的定義將x=1代入方程得到關(guān)于a的方程,然后解得a的值即可.
【解答】解:將x=1代入得:1+2+a=0,
解得:a=﹣3.
故答案為:﹣3.
【點(diǎn)評(píng)】本題主要考查的是方程的解(根)的定義和一元一次方程的解法,將方程的解代入方程是解題的關(guān)鍵.
17.如圖,直線OD與x軸所夾的銳角為30°,OA1的長(zhǎng)為1,△A1A2B1、△A2A3B2、△A3A4B3…△AnAn+1Bn均為等邊三角形,點(diǎn)A1、A2、A3…An+1在x軸的正半軸上依次排列,點(diǎn)B1、B2、B3…Bn在直線OD上依次排列,那么點(diǎn)Bn的坐標(biāo)為?。?×2n﹣2,
×2n﹣2)?。?/p>

【考點(diǎn)】(2016丹東數(shù)學(xué))一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征;等邊三角形的性質(zhì).
【專題】壓軸題;規(guī)律型.
【分析】根據(jù)等邊三角形的性質(zhì)和∠B1OA2=30°,可求得∠B1OA2=∠A1B1O=30°,可求得OA2=2OA1=2,同理可求得OAn=2n﹣1,再結(jié)合含30°角的直角三角形的性質(zhì)可求得△AnBnAn+1的邊長(zhǎng),進(jìn)一步可求得點(diǎn)Bn的坐標(biāo).
【解答】解:∵△A1B1A2為等邊三角形,
∴∠B1A1A2=60°,
∵∠B1OA2=30°,
∴∠B1OA2=∠A1B1O=30°,可求得OA2=2OA1=2,
同理可求得OAn=2n﹣1,
∵∠BnOAn+1=30°,∠BnAnAn+1=60°,
∴∠BnOAn+1=∠OBnAn=30°
∴BnAn=OAn=2n﹣1,
即△AnBnAn+1的邊長(zhǎng)為2n﹣1,則可求得其高為
×2n﹣1=
×2n﹣2,
∴點(diǎn)Bn的橫坐標(biāo)為
×2n﹣1+2n﹣1=
×2n﹣1=3×2n﹣2,
∴點(diǎn)Bn的坐標(biāo)為(3×2n﹣2,
×2n﹣2).
故答案為(3×2n﹣2,
×2n﹣2).
【點(diǎn)評(píng)】(2016丹東數(shù)學(xué))本題主要考查等邊三角形的性質(zhì)和含30°角的直角三角形的性質(zhì),根據(jù)條件找到等邊三角形的邊長(zhǎng)和OA1的關(guān)系是解題的關(guān)鍵.
三、解答題
18.先化簡(jiǎn),再求值:(1﹣
)÷
,其中a=3.
【考點(diǎn)】分式的化簡(jiǎn)求值.
【分析】先計(jì)算括號(hào)里面的,再把分子、分母因式分解,約分即可,把a(bǔ)=3代入計(jì)算即可.
【解答】解:原式=
×![]()
=
,
當(dāng)a=3時(shí),原式=
=
.
【點(diǎn)評(píng)】本題考查了分式的化簡(jiǎn)求值,解答此題的關(guān)鍵是把分式化到最簡(jiǎn),然后代值計(jì)算.
19.(2016丹東數(shù)學(xué))如圖,在平面直角坐標(biāo)系中,△ABC的三個(gè)頂點(diǎn)坐標(biāo)分別為A(1,4),B(4,2),C(3,5)
20.某中學(xué)數(shù)學(xué)興趣小組為了解本校學(xué)生對(duì)電視節(jié)目的喜愛情況,隨機(jī)調(diào)查了部分學(xué)生最喜愛哪一類節(jié)目 (被調(diào)查的學(xué)生只選一類并且沒有不選擇的),并將調(diào)查結(jié)果制成了如下的兩個(gè)統(tǒng)計(jì)圖(不完整).請(qǐng)你根據(jù)圖中所提供的信息,完成下列問題:
(1)求本次調(diào)查的學(xué)生人數(shù);
(2)請(qǐng)將兩個(gè)統(tǒng)計(jì)圖補(bǔ)充完整,并求出新聞節(jié)目在扇形統(tǒng)計(jì)圖中所占圓心角的度數(shù);
(3)若該中學(xué)有2000名學(xué)生,請(qǐng)估計(jì)該校喜愛電視劇節(jié)目的人數(shù).

【考點(diǎn)】條形統(tǒng)計(jì)圖;用樣本估計(jì)總體;扇形統(tǒng)計(jì)圖.
【分析】(1)根據(jù)喜愛電視劇的人數(shù)是69人,占總?cè)藬?shù)的23%,即可求得總?cè)藬?shù);
(2)根據(jù)總?cè)藬?shù)和喜歡娛樂節(jié)目的百分?jǐn)?shù)可求的其人數(shù),補(bǔ)全即可;利用360°乘以對(duì)應(yīng)的百分比即可求得圓心角的度數(shù);
(3)利用總?cè)藬?shù)乘以對(duì)應(yīng)的百分比即可求解.
【解答】(2016丹東數(shù)學(xué))解:(1)69÷23%=300(人)
∴本次共調(diào)查300人;
(2)∵喜歡娛樂節(jié)目的人數(shù)占總?cè)藬?shù)的20%,
∴20%×300=60(人),補(bǔ)全如圖;
∵360°×12%=43.2°,
∴新聞節(jié)目在扇形統(tǒng)計(jì)圖中所占圓心角的度數(shù)為43.2°;
(3)2000×23%=460(人),
∴估計(jì)該校有460人喜愛電視劇節(jié)目.

【點(diǎn)評(píng)】(2016丹東數(shù)學(xué))本題考查的是條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖的綜合運(yùn)用,讀懂統(tǒng)計(jì)圖,從不同的統(tǒng)計(jì)圖中得到必要的信息是解決問題的關(guān)鍵.條形統(tǒng)計(jì)圖能清楚地表示出每個(gè)項(xiàng)目的數(shù)據(jù);扇形統(tǒng)計(jì)圖直接反映部分占總體的百分比大?。?/p>
21.從甲市到乙市乘坐高速列車的路程為180千米,乘坐普通列車的路程為240千米.高速列車的平均速度是普通列車的平均速度的3倍.高速列車的乘車時(shí)間比普通列車的乘車時(shí)間縮短了2小時(shí).高速列車的平均速度是每小時(shí)多少千米?
【考點(diǎn)】分式方程的應(yīng)用.
【分析】設(shè)普通列車平均速度每小時(shí)x千米,則高速列車平均速度每小時(shí)3x千米,根據(jù)題意可得,坐高鐵走180千米比坐普通車240千米少用2小時(shí),據(jù)此列方程求解.
【解答】解:設(shè)普通列車平均速度每小時(shí)x千米,則高速列車平均速度每小時(shí)3x千米,
根據(jù)題意得,
﹣
=2,
解得:x=90,
經(jīng)檢驗(yàn),x=90是所列方程的根,
則3x=3×90=270.
答:高速列車平均速度為每小時(shí)270千米.
【點(diǎn)評(píng)】本題考查了分式方程的應(yīng)用,解答本題的關(guān)鍵是讀懂題意,設(shè)出未知數(shù),找出合適的等量關(guān)系,列方程求解,注意檢驗(yàn).
五、
22.(2016丹東數(shù)學(xué))一個(gè)不透明的口袋中裝有4個(gè)分別標(biāo)有數(shù)字﹣1,﹣2,3,4的小球,它們的形狀、大小完全相同.小紅先從口袋中隨機(jī)摸出一個(gè)小球記下數(shù)字為x;小穎在剩下的3個(gè)小球中隨機(jī)摸出一個(gè)小球記下數(shù)字為y.
(1)小紅摸出標(biāo)有數(shù)字3的小球的概率是
;
(2)請(qǐng)用列表法或畫樹狀圖的方法表示出由x,y確定的點(diǎn)P(x,y)所有可能的結(jié)果;
(3)若規(guī)定:點(diǎn)P(x,y)在第一象限或第三象限小紅獲勝;點(diǎn)P(x,y)在第二象限或第四象限則小穎獲勝.請(qǐng)分別求出兩人獲勝的概率.
【考點(diǎn)】列表法與樹狀圖法.
【專題】計(jì)算題.
【分析】(1)直接根據(jù)概率公式求解;
(2)通過列表展示所有12種等可能性的結(jié)果數(shù);
(3)找出在第一象限或第三象限的結(jié)果數(shù)和第二象限或第四象限的結(jié)果數(shù),然后根據(jù)概率公式計(jì)算兩人獲勝的概率.
【解答】解:(1)小紅摸出標(biāo)有數(shù)字3的小球的概率是
;
故答案為
;
(2)(2016丹東數(shù)學(xué))列表如下:
| ﹣1 | ﹣2 | 3 | 4 |
﹣1 |
| (﹣1,﹣2) | (﹣1,3) | (﹣1,4) |
﹣2 | (﹣2,﹣1) |
| (﹣2,3) | (﹣2,4) |
3 | (3,﹣1) | (3,﹣2) |
| (3,4) |
4 | (4,﹣1) | (4,﹣2) | (4,3) |
|
(3)從上面的表格可以看出,所有可能出現(xiàn)的結(jié)果共有12種,且每種結(jié)果出現(xiàn)的可能性相同,其中點(diǎn)(x,y)在第一象限或第三象限的結(jié)果有4種,第二象限或第四象限的結(jié)果有8種,
所以小紅獲勝的概率=
=
,小穎獲勝的概率=
=
.
【點(diǎn)評(píng)】本題考查了列表法或樹狀圖法:通過列表法或樹狀圖法展示所有等可能的結(jié)果求出n,再?gòu)闹羞x出符合事件A或B的結(jié)果數(shù)目m,然后根據(jù)概率公式求出事件A或B的概率.
23.如圖,AB是⊙O的直徑,
=
,連接ED、BD,延長(zhǎng)AE交BD的延長(zhǎng)線于點(diǎn)M,過點(diǎn)D作⊙O的切線交AB的延長(zhǎng)線于點(diǎn)C.
(1)若OA=CD=2
,求陰影部分的面積;
(2)求證:DE=DM.

【考點(diǎn)】(2016丹東數(shù)學(xué))切線的性質(zhì);扇形面積的計(jì)算.
【專題】證明題.
【分析】(1)連接OD,根據(jù)已知和切線的性質(zhì)證明△OCD為等腰直角三角形,得到∠DOC=45°,根據(jù)S陰影=S△OCD﹣S扇OBD計(jì)算即可;
(2)連接AD,根據(jù)弦、弧之間的關(guān)系證明DB=DE,證明△AMD≌△ABD,得到DM=BD,得到答案.
【解答】(1)解:如圖,連接OD,
∵CD是⊙O切線,
∴OD⊥CD,
∵OA=CD=2
,OA=OD,
∴OD=CD=2
,
∴△OCD為等腰直角三角形,
∴∠DOC=∠C=45°,
∴S陰影=S△OCD﹣S扇OBD=
﹣
=4﹣π;
(2)證明:如圖,連接AD,
∵AB是⊙O直徑,
∴∠ADB=∠ADM=90°,
又∵
=
,
∴ED=BD,∠MAD=∠BAD,
在△AMD和△ABD中,
,
∴△AMD≌△ABD,
∴DM=BD,
∴DE=DM.

【點(diǎn)評(píng)】(2016丹東數(shù)學(xué))本題考查的是切線的性質(zhì)、弦、弧之間的關(guān)系、扇形面積的計(jì)算,掌握切線的性質(zhì)定理和扇形的面積公式是解題的關(guān)鍵,注意輔助線的作法.
六、
24.如圖,線段AB,CD表示甲、乙兩幢居民樓的高,兩樓間的距離BD是60米.某人站在A處測(cè)得C點(diǎn)的俯角為37°,D點(diǎn)的俯角為48°(人的身高忽略不計(jì)),求乙樓的高度CD.(參考數(shù)據(jù):sin37°≈
,tan37°≈
,sin48°≈
,tan48°≈
)

【考點(diǎn)】(2016丹東數(shù)學(xué))解直角三角形的應(yīng)用-仰角俯角問題.
【分析】過點(diǎn)C作CE⊥AB交AB于點(diǎn)E,在直角△ADB中利用三角函數(shù)求得AB的長(zhǎng),然后在直角△AEC中求得AE的長(zhǎng),即可求解.
【解答】解:過點(diǎn)C作CE⊥AB交AB于點(diǎn)E,
則四邊形EBDC為矩形,
∴BE=CD? CE=BD=60,
如圖,根據(jù)題意可得,
∠ADB=48°,∠ACE=37°,
∵
,
在Rt△ADB中,
則AB=tan48°?BD≈
(米),
∵
,
在Rt△ACE中,
則AE=tan37°?CE≈
(米),
∴CD=BE=AB﹣AE=66﹣45=21(米),
∴乙樓的高度CD為21米.

【點(diǎn)評(píng)】本題考查了解直角三角形的應(yīng)用﹣仰角俯角問題,本題要求學(xué)生借助俯角構(gòu)造直角三角形,并結(jié)合圖形利用三角函數(shù)解直角三角形.
25.某商店購(gòu)進(jìn)一種商品,每件商品進(jìn)價(jià)30元.試銷中發(fā)現(xiàn)這種商品每天的銷售量y(件)與每件銷售價(jià)x(元)的關(guān)系數(shù)據(jù)如下:
x | 30 | 32 | 34 | 36 |
y | 40 | 36 | 32 | 28 |
(1)已知y與x滿足一次函數(shù)關(guān)系,根據(jù)上表,求出y與x之間的關(guān)系式(不寫出自變量x的取值范圍);
(2)如果商店銷售這種商品,每天要獲得150元利潤(rùn),那么每件商品的銷售價(jià)應(yīng)定為多少元?
(3)設(shè)該商店每天銷售這種商品所獲利潤(rùn)為w(元),求出w與x之間的關(guān)系式,并求出每件商品銷售價(jià)定為多少元時(shí)利潤(rùn)最大?
【考點(diǎn)】(2016丹東數(shù)學(xué))二次函數(shù)的應(yīng)用.
【分析】(1)根據(jù)待定系數(shù)法解出解析式即可;
(2)根據(jù)題意列出方程解答即可;
(3)根據(jù)題意列出函數(shù)解析式,利用函數(shù)解析式的最值解答即可.
【解答】解:(1)設(shè)該函數(shù)的表達(dá)式為y=kx+b,根據(jù)題意,得
,
解得:
.
故該函數(shù)的表達(dá)式為y=﹣2x+100;
(2)根據(jù)題意得,
(﹣2x+100)(x﹣30)=150,
解這個(gè)方程得,x1=35,x2=45,
故每件商品的銷售價(jià)定為35元或45元時(shí)日利潤(rùn)為150元;
(3)根據(jù)題意,得
w=(﹣2x+100)(x﹣30)
=﹣2x2+160x﹣3000
=﹣2(x﹣40)2+200,
∵a=﹣2<0 則拋物線開口向下,函數(shù)有最大值,
即當(dāng)x=40時(shí),w的值最大,
∴當(dāng)銷售單價(jià)為40元時(shí)獲得利潤(rùn)最大.
【點(diǎn)評(píng)】(2016丹東數(shù)學(xué))此題考查二次函數(shù)的應(yīng)用,關(guān)鍵是根據(jù)題意列出方程和函數(shù)解析式,利用函數(shù)解析式的最值分析.
七、(本題12分)
26.在正方形ABCD中,對(duì)角線AC與BD交于點(diǎn)O;在Rt△PMN中,∠MPN=90°.
(1)如圖1,若點(diǎn)P與點(diǎn)O重合且PM⊥AD、PN⊥AB,分別交AD、AB于點(diǎn)E、F,請(qǐng)直接寫出PE與PF的數(shù)量關(guān)系;
(2)將圖1中的Rt△PMN繞點(diǎn)O順時(shí)針旋轉(zhuǎn)角度α(0°<α<45°).
①如圖2,在旋轉(zhuǎn)過程中(1)中的結(jié)論依然成立嗎?若成立,請(qǐng)證明;若不成立,請(qǐng)說明理由;
②如圖2,在旋轉(zhuǎn)過程中,當(dāng)∠DOM=15°時(shí),連接EF,若正方形的邊長(zhǎng)為2,請(qǐng)直接寫出線段EF的長(zhǎng);
③如圖3,旋轉(zhuǎn)后,若Rt△PMN的頂點(diǎn)P在線段OB上移動(dòng)(不與點(diǎn)O、B重合),當(dāng)BD=3BP時(shí),猜想此時(shí)PE與PF的數(shù)量關(guān)系,并給出證明;當(dāng)BD=m?BP時(shí),請(qǐng)直接寫出PE與PF的數(shù)量關(guān)系.

【考點(diǎn)】(2016丹東數(shù)學(xué))四邊形綜合題.
【專題】壓軸題.
【分析】(1)根據(jù)正方形的性質(zhì)和角平分線的性質(zhì)解答即可;
(2)①根據(jù)正方形的性質(zhì)和旋轉(zhuǎn)的性質(zhì)證明△FOA≌△EOD,得到答案;
②作OG⊥AB于G,根據(jù)余弦的概念求出OF的長(zhǎng),根據(jù)勾股定理求值即可;
③過點(diǎn)P作HP⊥BD交AB于點(diǎn)H,根據(jù)相似三角形的判定和性質(zhì)求出PE與PF的數(shù)量關(guān)系,根據(jù)解答結(jié)果總結(jié)規(guī)律得到當(dāng)BD=m?BP時(shí),PE與PF的數(shù)量關(guān)系.
【解答】(2016丹東數(shù)學(xué))解:(1)PE=PF,理由:
∵四邊形ABCD為正方形,
∴∠BAC=∠DAC,又PM⊥AD、PN⊥AB,
∴PE=PF;
(2)①成立,理由:
∵AC、BD是正方形ABCD的對(duì)角線,
∴OA=OD,∠FAO=∠EDO=45°,∠AOD=90°,
∴∠DOE+∠AOE=90°,
∵∠MPN=90°,
∴∠FOA+∠AOE=90°,
∴∠FOA=∠DOE,
在△FOA和△EOD中,
,
∴△FOA≌△EOD,
∴OE=OF,即PE=PF;
②作OG⊥AB于G,
∵∠DOM=15°,
∴∠AOF=15°,則∠FOG=30°,
∵cos∠FOG=
,
∴OF=
=
,又OE=OF,
∴EF=
;
③PE=2PF,
證明:如圖3,過點(diǎn)P作HP⊥BD交AB于點(diǎn)H,
則△HPB為等腰直角三角形,∠HPD=90°,
∴HP=BP,
∵BD=3BP,
∴PD=2BP,
∴PD=2 HP,
又∵∠HPF+∠HPE=90°,∠DPE+∠HPE=90°,
∴∠HPF=∠DPE,
又∵∠BHP=∠EDP=45°,
∴△PHF∽△PDE,
∴
=
=
,
即PE=2PF,
由此規(guī)律可知,當(dāng)BD=m?BP時(shí),PE=(m﹣1)?PF.


【點(diǎn)評(píng)】(2016丹東數(shù)學(xué))本題考查的是正方形的性質(zhì)和旋轉(zhuǎn)變換,掌握旋轉(zhuǎn)變換的性質(zhì)、找準(zhǔn)對(duì)應(yīng)關(guān)系正確運(yùn)用三角形全等和相似的判定和性質(zhì)定理是解題的關(guān)鍵,正確作出輔助線是解答本題的重點(diǎn).
八、(本題14分)
27.如圖,已知二次函數(shù)y=ax2+
x+c的圖象與y軸交于點(diǎn)A(0,4),與x軸交于點(diǎn)B、C,點(diǎn)C坐標(biāo)為(8,0),連接AB、AC.
(1)請(qǐng)直接寫出二次函數(shù)y=ax2+
x+c的表達(dá)式;
(2)判斷△ABC的形狀,并說明理由;
(3)若點(diǎn)N在x軸上運(yùn)動(dòng),當(dāng)以點(diǎn)A、N、C為頂點(diǎn)的三角形是等腰三角形時(shí),請(qǐng)直接寫出此時(shí)點(diǎn)N的坐標(biāo);
(4)若點(diǎn)N在線段BC上運(yùn)動(dòng)(不與點(diǎn)B、C重合),過點(diǎn)N作NM∥AC,交AB于點(diǎn)M,當(dāng)△AMN面積最大時(shí),求此時(shí)點(diǎn)N的坐標(biāo).

【考點(diǎn)】二次函數(shù)綜合題.
【專題】壓軸題.
【分析】(2016丹東數(shù)學(xué))(1)根據(jù)待定系數(shù)法即可求得;
(2)根據(jù)拋物線的解析式求得B的坐標(biāo),然后根據(jù)勾股定理分別求得AB2=20,AC2=80,BC10,然后根據(jù)勾股定理的逆定理即可證得△ABC是直角三角形.
(3)分別以A、C兩點(diǎn)為圓心,AC長(zhǎng)為半徑畫弧,與x軸交于三個(gè)點(diǎn),由AC的垂直平分線與x軸交于一個(gè)點(diǎn),即可求得點(diǎn)N的坐標(biāo);
(4)設(shè)點(diǎn)N的坐標(biāo)為(n,0),則BN=n+2,過M點(diǎn)作MD⊥x軸于點(diǎn)D,根據(jù)三角形相似對(duì)應(yīng)邊成比例求得MD=
(n+2),然后根據(jù)S△AMN=S△ABN﹣S△BMN
得出關(guān)于n的二次函數(shù),根據(jù)函數(shù)解析式求得即可.
【解答】(2016丹東數(shù)學(xué))解:(1)∵二次函數(shù)y=ax2+
x+c的圖象與y軸交于點(diǎn)A(0,4),與x軸交于點(diǎn)B、C,點(diǎn)C坐標(biāo)為(8,0),
∴
,
解得
.
∴拋物線表達(dá)式:y=﹣
x2+
x+4;
(2)△ABC是直角三角形.
令y=0,則﹣
x2+
x+4=0,
解得x1=8,x2=﹣2,
∴點(diǎn)B的坐標(biāo)為(﹣2,0),
由已知可得,
在Rt△ABO中AB2=BO2+AO2=22+42=20,
在Rt△AOC中AC2=AO2+CO2=42+82=80,
又∵BC=OB+OC=2+8=10,
∴在△ABC中AB2+AC2=20+80=102=BC2
∴△ABC是直角三角形.
(3)∵A(0,4),C(8,0),
∴AC=
=4
,
①以A為圓心,以AC長(zhǎng)為半徑作圓,交x軸于N,此時(shí)N的坐標(biāo)為(﹣8,0),
②以C為圓心,以AC長(zhǎng)為半徑作圓,交x軸于N,此時(shí)N的坐標(biāo)為(8﹣4
,0)或(8+4
,0)
③作AC的垂直平分線,交x軸于N,此時(shí)N的坐標(biāo)為(3,0),
綜上,若點(diǎn)N在x軸上運(yùn)動(dòng),當(dāng)以點(diǎn)A、N、C為頂點(diǎn)的三角形是等腰三角形時(shí),點(diǎn)N的坐標(biāo)分別為(﹣8,0)、(8﹣4
,0)、(3,0)、(8+4
,0).
(4)設(shè)點(diǎn)N的坐標(biāo)為(n,0),則BN=n+2,過M點(diǎn)作MD⊥x軸于點(diǎn)D,
∴MD∥OA,
∴△BMD∽△BAO,
∴
=
,
∵M(jìn)N∥AC
∴
=
,
∴
=
,
∵OA=4,BC=10,BN=n+2
∴MD=
(n+2),
∵S△AMN=S△ABN﹣S△BMN
=
BN?OA﹣
BN?MD
=
(n+2)×4﹣
×
(n+2)2
=﹣
(n﹣3)2+5,
∴當(dāng)△AMN面積最大時(shí),N點(diǎn)坐標(biāo)為(3,0).

【點(diǎn)評(píng)】(2016丹東數(shù)學(xué))本題是二次函數(shù)的綜合題,考查了待定系數(shù)法求解析式,勾股定理和逆定理,等腰三角形的性質(zhì),三角形相似的判定和性質(zhì)以及函數(shù)的最值等,熟練掌握性質(zhì)定理是解題的關(guān)鍵.

孔乙己是貧困潦倒的知識(shí)分子。在書中,孔乙己是一個(gè)知識(shí)分子,滿口“之乎者也”,但是他很窮,還竊書,說過“讀書人的事,怎么能叫竊,”被人嘲笑,他...

自然界產(chǎn)生氧氣的化學(xué)方程式:光合作用的反應(yīng)式為6CO2+12H2O→C6H12O6+6O2+6H2O。包括光反應(yīng)和暗反應(yīng)兩個(gè)過程。需要具備光...

有的高校沒有條件,只要學(xué)業(yè)水平成績(jī)都合格就可以,比如中國(guó)科學(xué)院大學(xué)。有的需要平常學(xué)習(xí)考試成績(jī),比如北京外國(guó)語大學(xué)要求高三第一學(xué)期期末成績(jī)?cè)谌?..

在四則運(yùn)算中,表示計(jì)算順序,在小括號(hào)之后、大括號(hào)之前;表示兩個(gè)整數(shù)的最小公倍數(shù);表示取未知數(shù)的整數(shù)部分;在函數(shù)中,表示函數(shù)的閉區(qū)間;在線性代...

濟(jì)南開設(shè)的最好的職高學(xué)校有:濟(jì)南方信集團(tuán)職業(yè)高中、濟(jì)南公共交通職業(yè)高中。濟(jì)南市公共交通職業(yè)高級(jí)中學(xué)是由濟(jì)南市公共交通總公司承辦,業(yè)務(wù)屬濟(jì)南市...

實(shí)然:是說事物實(shí)際上就是這樣的,但不同于現(xiàn)實(shí)性(現(xiàn)實(shí)性指其有合理性和客觀性);應(yīng)然:就是應(yīng)該是怎么樣的意思,比如說這件事,就應(yīng)該是那樣的結(jié)果...

地中海氣候一種夏季炎熱干燥、冬季溫和多雨,雨熱不同期的氣候類型。地中海氣候冬季受西風(fēng)帶控制,鋒面氣旋頻繁活動(dòng),氣候溫和,最冷月的氣溫在4-1...

堿石灰,又稱鈉石灰,堿石灰是白色或米黃色粉末,疏松多孔,是氧化鈣(CaO,大約75%),水(H?O,大約20%),氫氧化鈉(NaOH,大約3...