成人国产免费电影_夜色福利刺激_蜜臀av性久久久久蜜臀aⅴ四虎_国产区视频在线观看

    全國

    當前位置:

  • 熱門地區:
  • 選擇地區:
  • ×
當前位置: 初三網 > 衡水中考 > 衡水中考試題 > 衡水數學試題 > 正文

2018衡水市中考數學壓軸試題【解析版含答案】

2017-12-10 16:22:00文/趙妍妍

由于格式問題此試題可能會出現亂碼的情況

為了方便您閱讀請點擊右上角的全屏查看

2018衡水市中考數學壓軸試題

一、選擇題(本大題共16個小題,1-10小題,每小題3分;11-16小題,每小題3分,共42分,在每小題給出的四個選項中,只有一項是符合題目要求的)

1.有四盒小包裝楊梅,每盒以標準克數為基準,超過的克數記作正數,不足的克數記作負數,以下數據是記錄結果,其中表示實際克數最接近標準克數的是(  )

A.+2????????????? B.﹣3????????????? C.+3????????????? D.﹣1

2.下面說法正確的是(  )

A.是無理數????????????? B.是有理數????????????? C.是無理數????????????? D.是有理數

3.我國古代數學家利用“牟合方蓋”(如圖甲)找到了球體體積的計算方法.“牟合方蓋”是由兩個圓柱分別從縱橫兩個方向嵌入一個正方體時兩圓柱公共部分形成的幾何體.圖乙所示的幾何體是可以形成“牟合方蓋”的一種模型,它的主視圖是(  )

A.????????????? B.????????????? C.????????????? D.

4.(衡水中考數學)下列運算正確的是(  )

A.a2+a3=a5????????????? B.a2?a3=a5????????????? C.(a2)3=a5????????????? D.a10÷a2=a5

5.如果從甲船看乙船,乙船在甲船的北偏東30°方向,那么從乙船看甲船,甲船在乙船的(  )

A.南偏西30°方向????????????? B.南偏西60°方向

C.南偏東30°方向????????????? D.南偏東60°方向

6.將分數﹣化為小數是﹣0.. 5714,則小數點后第2016位上的數是(  )

A.8????????????? B.7????????????? C.4????????????? D.2

7.計算的結果是(  )

A.6????????????? B.????????????? C.2????????????? D.

8.下列圖形中,既是軸對稱又是中心對稱圖形的是(  )

A.????????????? B.????????????? C.????????????? D.

9.如圖,在平面直角坐標系中,矩形ABOC的兩邊在坐標軸上,OB=1,點A在函數y=﹣(x<0)的圖象上,將此矩形向右平移3個單位長度到A1B1O1C1的位置,此時點A1在函數y=(x>0)的圖象上,C1O1與此圖象交于點P,則點P的縱坐標是(  )

A.????????????? B.????????????? C.????????????? D.

10.(衡水中考數學)甲地到乙地之間的鐵路長210千米,動車運行后的平均速度是原來火車的1.8倍,這樣由甲地到乙地的行駛時間縮短了1.5小時,設原來火車的平均速度為x千米/小時,則下列方程正確的是(  )

A.﹣1.8=????????????? B. +1.8=

C. +1.5=????????????? D.﹣1.5=

11.在數軸上表示不等式組的解集,正確的是(  )

A.????????????? B.????????????? C.????????????? D.

12.下列方程沒有實數根的是(  )

A.x2+4x=10????????????? B.3x2+8x﹣3=0????????????? C.x2﹣2x+3=0????????????? D.(x﹣2)(x﹣3)=12

13.某鄉鎮的4個村莊A、B、C、D恰好位于正方形的4個頂點上,為了解決農民出行難問題,鎮政府決定修建連接各村莊的道路系統,使得每兩個村莊都有直達的公路,設計人員給出了如下四個設計方案(實線表示連接的道路)

在上述四個方案中最短的道路系統是方案(  )

A.一????????????? B.二????????????? C.三????????????? D.四

14.如圖,AB為直徑,AB=4,C、D為圓上兩個動點,N為CD中點,CM⊥AB于M,當C、D在圓上運動時保持∠CMN=30°,則CD的長(  )

A.隨C、D的運動位置而變化,且最大值為4

B.隨C、D的運動位置而變化,且最小值為2

C.隨C、D的運動位置長度保持不變,等于2

D.隨C、D的運動位置而變化,沒有最值

15.(衡水中考數學)如圖,三根音管被敲擊時能依次發出“1”、“3”、“5”,兩只音錘同時從“1”開始,以相同的節拍往復敲擊這三根音管,不同的是:甲錘每拍移動一位(左中右中左中右…),乙錘則在兩端各有一拍不移位(左中右右中左左中右…).在第2010拍時,你聽到的是(  )

A.同樣的音“1”????????????? B.同樣的音“3”????????????? C.同樣的音“5”????????????? D.不同的兩個音

16.如圖,邊長為2的正方形EFGH在邊長為6的正方形ABCD所在平面上移動,始終保持EF∥AB.線段CF的中點為M,DH的中點為N,則線段MN的長為(  )

A.????????????? B.????????????? C.????????????? D.

 

二、填空題(本大題共4個小題,每小題3分,共12分,把答案寫在題中橫線上)

17.如圖,在平面直角坐標系中,直線y=﹣x+2分別交x軸、y軸于A、B兩點,點P(1,m)在△AOB的形內(不包含邊界),則m的值可能是      .(填一個即可)

18.有A、B兩個密室,小明進入入口后,可從左、中、右三條通道中任選一條,則小明進入A密室的概率為      .

19.(衡水中考數學)如圖,在正方形ABCD內有一折線段,其中AE丄EF,EF丄FC,并且AE=6,EF=8,FC=10,則正方形與其外接圓之間形成的陰影部分的面積為      .

20.如圖,金屬桿AB的中點C與一個直徑為12的圓環焊接并固定在一起,金屬桿的A端著地并且與地面成30°角.圓環沿著AD向D的方向滾動(無滑動)的距離為      時B點恰好著地.

 

三、解答題(本大題共6個小題,共66分,解答應寫出文字說明、證明過程或演算步驟)

21.如圖,點A、B在數軸上,它們所對應的數分別是

(1)當x=1.5時,求AB的長;

(2)當點A到原點的距離比B到原點的距離多3,求x的值.

22.已知,如圖,DC∥AB,且DC=AB,E為AB的中點.

(1)求證:△AED≌△EBC;

(2)觀察圖形,在不添加輔助線的情況下,除△EBC外,請再寫出兩個與△AED的面積相等的三角形(直接寫出結果,不要求證明):      .

23.(衡水中考數學)某學校為了增強學生體質,決定開設以下體育課外活動項目:A.籃球? B.乒乓球C.羽毛球? D.足球,為了解學生最喜歡哪一種活動項目,隨機抽取了部分學生進行調查,并將調查結果繪制成了兩幅不完整的統計圖,請回答下列問題:

(1)這次被調查的學生共有      人;

(2)請你將條形統計圖(2)補充完整;

(3)在平時的乒乓球項目訓練中,甲、乙、丙、丁四人表現優秀,現決定從這四名同學中任選兩名參加乒乓球比賽,求恰好選中甲、乙兩位同學的概率(用樹狀圖或列表法解答)

24.函數y=(x>0)與y=(x>0)的圖象如圖所示,點P是y軸上的任意一點,直線x=t(t>0)分別與兩個函數圖象交于點Q,R,連接PQ,PR.

(1)用t表示PQ的長度,并判斷隨著t的值逐漸增大,RQ長度的變化情況;

(2)當t從小到大變化時,△PQR的面積是否發生變化?請說明理由;

(3)當t=1時,△PQR的周長是否發生變化?如果發生變化,當P點坐標為      時,△PQR的周長最小,最小周長是      ;如果不發生變化,請說明理由.

25.如圖,在直角坐標系中,過點P(x,0)作x軸的垂線分別交拋物線y=x2+2與直線y=﹣x于A,B兩點,以線段AB為對角線作正方形ADBC,已知點Q(a,b)為該拋物線上的點.

(1)寫出AB的長度關于x的函數關系式,并指出AB的最小值;

(2)若x=1,當點Q在正方形ADBC邊上(點A除外)時,求a的值.

(3)若a=﹣1時,當點Q在正方形ADBC的內部(包括邊界)時,求x的取值范圍.

26.(衡水中考數學)對于一個圓和一個正方形給出如下定義:若圓上存在到此正方形四條邊距離都相等的點,則稱這個圓是該正方形的“等距圓”.

如圖1,在平面直角坐標系xOy中,正方形ABCD的頂點A的坐標為(2,4),頂點C、D在x軸上,且點C在點D的左側.

(1)當r=2時,在P1(0,2),P2(﹣2,4),P3(4,2)中可以成為正方形ABCD的“等距圓”的圓心的是      ;

(2)當P點坐標為(﹣3,6),則當⊙P的半徑r是多少時,⊙P是正方形ABCD的“等距圓”,試判斷此時⊙P與直線AC的位置關系,并說明理由.

(3)如圖2,在正方形ABCD所在平面直角坐標系xOy中,正方形EFGH的頂點F的坐標為(6,2),頂點E、H在y軸上,且點H在點E的上方.

①將正方形ABCD繞著點D旋轉一周,在旋轉的過程中,線段HF上沒有一個點能成為它的“等距圓”的圓心,直接寫出r的取值范圍是      .

②若⊙P同時為上述兩個正方形的“等距圓”,且與BC所在直線相切,求⊙P的圓心P的坐標.

 


衡水中考數學參考答案與試題解析

 

一、選擇題(本大題共16個小題,1-10小題,每小題3分;11-16小題,每小題3分,共42分,在每小題給出的四個選項中,只有一項是符合題目要求的)

1.有四盒小包裝楊梅,每盒以標準克數為基準,超過的克數記作正數,不足的克數記作負數,以下數據是記錄結果,其中表示實際克數最接近標準克數的是(  )

A.+2????????????? B.﹣3????????????? C.+3????????????? D.﹣1

【考點】正數和負數.

【分析】實際克數最接近標準克數的是絕對值最小的那個數.

【解答】解:A、+2的絕對值是2;

B、﹣3的絕對值是3;

C、+3的絕對值是3;

D、﹣1的絕對值是.

D選項的絕對值最小.

故選:D.

 

2.(衡水中考數學)下面說法正確的是(  )

A.是無理數????????????? B.是有理數????????????? C.是無理數????????????? D.是有理數

【考點】實數.

【分析】直接利用有理數以及無理數的概念分別分析得出即可.

【解答】解:A、=1是有理數,故此選項錯誤;

B、是無理數,故此選項錯誤;

C、是有理數,故此選項錯誤;

D、=﹣3是有理數,故此選項正確.

故選:D.

 

3.我國古代數學家利用“牟合方蓋”(如圖甲)找到了球體體積的計算方法.“牟合方蓋”是由兩個圓柱分別從縱橫兩個方向嵌入一個正方體時兩圓柱公共部分形成的幾何體.圖乙所示的幾何體是可以形成“牟合方蓋”的一種模型,它的主視圖是(  )

A.????????????? B.????????????? C.????????????? D.

【考點】簡單組合體的三視圖.

【分析】根據主視圖的定義,得出圓柱以及立方體的擺放即可得出主視圖為3個正方形組合體,進而得出答案即可.

【解答】解:利用圓柱直徑等于立方體邊長,得出此時擺放,圓柱主視圖是正方形,

得出圓柱以及立方體的擺放的主視圖為兩列,左邊一個正方形,右邊兩個正方形,

故選:B.

 

4.(衡水中考數學)下列運算正確的是(  )

A.a2+a3=a5????????????? B.a2?a3=a5????????????? C.(a2)3=a5????????????? D.a10÷a2=a5

【考點】同底數冪的除法;合并同類項;同底數冪的乘法;冪的乘方與積的乘方.

【分析】根據同底數冪相乘,底數不變指數相加;冪的乘方,底數不變指數相乘;同底數冪相除,底數不變指數相減,對各選項計算后利用排除法求解.

【解答】解:A、a2與a3不是同類項,不能合并,故本選項錯誤;

B、a2?a3=a5,正確;

C、應為(a2)3=a2×3=a6,故本選項錯誤;

D、應為a10÷a2=a10﹣2=a8,故本選項錯誤.

故選B.

 

5.如果從甲船看乙船,乙船在甲船的北偏東30°方向,那么從乙船看甲船,甲船在乙船的(  )

A.南偏西30°方向????????????? B.南偏西60°方向

C.南偏東30°方向????????????? D.南偏東60°方向

【考點】方向角.

【分析】根據題意正確畫出圖形進而分析得出從乙船看甲船的方向.

【解答】解:如圖所示:可得∠1=30°,

∵從甲船看乙船,乙船在甲船的北偏東30°方向,

∴從乙船看甲船,甲船在乙船的南偏西30°方向.

故選:A.

 

6.將分數﹣化為小數是﹣0.. 5714,則小數點后第2016位上的數是(  )

A.8????????????? B.7????????????? C.4????????????? D.2

【考點】有理數.

【分析】分數﹣化為小數是﹣0.. 5714,循環節是857142,說明此循環小數中這6個數字為一個循環周期,要求小數點后面第2016位上的數字是幾,就是求2016里面有幾個6,再根據余數確定即可.

【解答】解:∵分數﹣化為小數是﹣0.. 5714,循環節是857142,

∴此循環小數中這6個數字為一個循環周期,

∵2016÷6=336;

∴小數點后面第2016位上的數字是2;

故選:D.

 

7.計算的結果是(  )

A.6????????????? B.????????????? C.2????????????? D.

【考點】二次根式的加減法.

【分析】根據二次根式加減的一般步驟,先化簡,再合并.

【解答】解:

=2

=

故選:D.

 

8.下列圖形中,既是軸對稱又是中心對稱圖形的是(  )

A.????????????? B.????????????? C.????????????? D.

【考點】中心對稱圖形;軸對稱圖形.

【分析】根據軸對稱圖形與中心對稱圖形的概念求解.

【解答】解:A、是軸對稱圖形,不是中心對稱圖形.故錯誤;

B、是軸對稱圖形,也是中心對稱圖形.故正確;

C、不是軸對稱圖形,是中心對稱圖形.故錯誤;

D、不是軸對稱圖形,也不是中心對稱圖形.故錯誤.

故選B.

 

9.如圖,在平面直角坐標系中,矩形ABOC的兩邊在坐標軸上,OB=1,點A在函數y=﹣(x<0)的圖象上,將此矩形向右平移3個單位長度到A1B1O1C1的位置,此時點A1在函數y=(x>0)的圖象上,C1O1與此圖象交于點P,則點P的縱坐標是(  )

A.????????????? B.????????????? C.????????????? D.

【考點】反比例函數圖象上點的坐標特征;坐標與圖形變化-平移.

【分析】先求出A點坐標,再根據圖形平移的性質得出A1點的坐標,故可得出反比例函數的解析式,把O1點的橫坐標代入即可得出結論.

【解答】解:∵OB=1,AB⊥OB,點A在函數y=﹣(x<0)的圖象上,

∴當x=﹣1時,y=2,

∴A(﹣1,2).

∵此矩形向右平移3個單位長度到A1B1O1C1的位置,

∴B1(2,0),

∴A1(2,2).

∵點A1在函數y=(x>0)的圖象上,

∴k=4,

∴反比例函數的解析式為y=,O1(3,0),

∵C1O1⊥x軸,

∴當x=3時,y=

∴P(3,).

故選C.

 

10.(衡水中考數學)甲地到乙地之間的鐵路長210千米,動車運行后的平均速度是原來火車的1.8倍,這樣由甲地到乙地的行駛時間縮短了1.5小時,設原來火車的平均速度為x千米/小時,則下列方程正確的是(  )

A.﹣1.8=????????????? B. +1.8=

C. +1.5=????????????? D.﹣1.5=

【考點】由實際問題抽象出分式方程.

【分析】根據:原來火車行駛210千米所需時間﹣1.5=動車行駛210千米所需時間,列方程即可.

【解答】解:設原來火車的平均速度為x千米/小時,則動車運行速度為1.8x千米/小時,

根據題意,得:﹣1.5=

故選:D.

 

11.在數軸上表示不等式組的解集,正確的是(  )

A.????????????? B.????????????? C.????????????? D.

【考點】解一元一次不等式組;在數軸上表示不等式的解集.

【分析】先解不等式組中的每一個不等式,再把不等式的解集表示在數軸上,即可.

【解答】解:解不等式組得

分別表示在數軸上為:

故選C.

 

12.下列方程沒有實數根的是(  )

A.x2+4x=10????????????? B.3x2+8x﹣3=0????????????? C.x2﹣2x+3=0????????????? D.(x﹣2)(x﹣3)=12

【考點】根的判別式.

【分析】先計算每個一元二次方程的判別式△=b2﹣4ac的值,再根據值的符號判斷根的情況,從而得出答案.

【解答】解:A、∵△=16﹣4×1×(﹣10)=56>0,∴方程有兩個不相等的實數根,故本選項錯誤;

B、∵△=64﹣4×3×(﹣3)=100>0,∴方程有兩個不相等的實數根,故本選項錯誤;

C、∵△=4﹣4×1×3=﹣8<0,∴方程無實數根,故本選項正確;

D、∵(x﹣2)(x﹣3)=12,∴x2﹣5x﹣6=0,∴△=25﹣4×1×(﹣6)=49>0,∴方程有兩個不相等的實數根,故本選項錯誤;

故選C.

 

13.某鄉鎮的4個村莊A、B、C、D恰好位于正方形的4個頂點上,為了解決農民出行難問題,鎮政府決定修建連接各村莊的道路系統,使得每兩個村莊都有直達的公路,設計人員給出了如下四個設計方案(實線表示連接的道路)

在上述四個方案中最短的道路系統是方案(  )

A.一????????????? B.二????????????? C.三????????????? D.四

【考點】作圖—應用與設計作圖.

【分析】設正方形的邊長為a,計算出各種情況時正方形的面積,然后進行比較從而解得.

【解答】解:設正方形邊長為a,則方案①需用線3a,方案②需用線2a,方案③需用線2a+a,

如圖所示:

∵AD=a,

∴AG=,AE=a,GE=a,

∴EF=a﹣2GE=a﹣a,

∴方案④需用線a×4+(a﹣a×2)=(1+)a.

∴方案④最省錢.

故選D.

 

14.(衡水中考數學)如圖,AB為直徑,AB=4,C、D為圓上兩個動點,N為CD中點,CM⊥AB于M,當C、D在圓上運動時保持∠CMN=30°,則CD的長(  )

A.隨C、D的運動位置而變化,且最大值為4

B.隨C、D的運動位置而變化,且最小值為2

C.隨C、D的運動位置長度保持不變,等于2

D.隨C、D的運動位置而變化,沒有最值

【考點】軌跡.

【分析】連接OC、ON、OD,由垂徑定理可知ON⊥CD,∠CON=∠DON,然后由∠ONC+∠CMO=180°,可證明O、N、C、M四點共圓,從而可得到∠NOC=∠NMC=30°,于是可證明△OCD為等邊三角形,從而得到CD=2.

【解答】解;連接:OC、ON、OD.

∵N是CD的中點,

∴ON⊥CD,∠CON=∠DON.

又∵CM⊥AB,

∴∠ONC+∠CMO=180°.

∴O、N、C、M四點共圓.

∴∠NOC=∠NMC=30°.

∴∠COD=60°.

又∵OC=OD,

∴△OCD為等邊三角形.

∴CD=

故選:C.

 

15.(衡水中考數學)如圖,三根音管被敲擊時能依次發出“1”、“3”、“5”,兩只音錘同時從“1”開始,以相同的節拍往復敲擊這三根音管,不同的是:甲錘每拍移動一位(左中右中左中右…),乙錘則在兩端各有一拍不移位(左中右右中左左中右…).在第2010拍時,你聽到的是(  )

A.同樣的音“1”????????????? B.同樣的音“3”????????????? C.同樣的音“5”????????????? D.不同的兩個音

【考點】規律型:圖形的變化類.

【分析】根據題意,知甲錘每4次一循環,乙錘每6次一循環.根據規律分別計算在第2010拍時,聽到的聲音.

【解答】解:甲錘:2010÷4=502,則在第2010拍時,聽到的是“3”的聲音;

乙錘:2010÷6=335,則在第2010拍時,聽到的是“1”的聲音.

故選D.

 

16.如圖,邊長為2的正方形EFGH在邊長為6的正方形ABCD所在平面上移動,始終保持EF∥AB.線段CF的中點為M,DH的中點為N,則線段MN的長為(  )

A.????????????? B.????????????? C.????????????? D.

【考點】全等三角形的判定與性質;勾股定理;三角形中位線定理;正方形的性質.

【分析】連接HM并延長至點P,使MP=MH,作PQ⊥CD于點Q,連接PC、FH、PD,由△FHM≌△CPM,求出PC=FH=,根據等腰直角三角形的性質求出PQ=CQ=2,再運用勾股定理求出PD,根據三角形中位線性質定理可求出MN的長.

【解答】解:連接HM并延長至點P,使MP=MH,作PQ⊥CD于點Q,連接PC、FH、PD,

∵M是線段CF的中點,

∴MF=MC,

在△FHM和△CPM中,

∴△FHM≌△CPM,

∴FH=PC,∠HFM=∠PCM,

∵EF=EH=2,

∴FH=PC=2

∵FG∥BC,

∴∠GFM=∠BCM,

∴∠HFG=∠PCB=45°,

∴∠PCQ=45°,

∴PQ=QC=2,

∴DQ=CD+CQ=8,

∴PD=2

∵線段HP的中點為M,DH的中點為N,

∴MN=PD=

故選:C.

 

二、填空題(本大題共4個小題,每小題3分,共12分,把答案寫在題中橫線上)

17.如圖,在平面直角坐標系中,直線y=﹣x+2分別交x軸、y軸于A、B兩點,點P(1,m)在△AOB的形內(不包含邊界),則m的值可能是 1 .(填一個即可)

【考點】一次函數圖象上點的坐標特征.

【分析】先求出AB兩點的坐標,進而可得出結論.

【解答】解:∵直線y=﹣x+2分別交x軸、y軸于A、B兩點,

∴A(4,0),B(0,2),

∴當點P在直線y=﹣x+2上時,﹣+2=m,解得m=

∵點P(1,m)在△AOB的形內,

∴0<m<

∴m的值可以是1.

故答案為:1.

 

18.有A、B兩個密室,小明進入入口后,可從左、中、右三條通道中任選一條,則小明進入A密室的概率為  .

【考點】列表法與樹狀圖法.

【分析】列樹狀圖得到一共有6種情況,其中進入A密室的有2種可能,即可利用概率公式求出小明從中間通道進入A密室的概率.

【解答】解:畫出樹狀圖得:

由表可知,小明進入密室后一共有6種不同的可能路線,因為小明是任選一條道路,所以走各種路線的可能性認為是相等的,而其中進入A密室的有2種可能,進入B密室的有4種可能,所以進入A密室的概率為: =

故答案為:

 

19.如圖,在正方形ABCD內有一折線段,其中AE丄EF,EF丄FC,并且AE=6,EF=8,FC=10,則正方形與其外接圓之間形成的陰影部分的面積為 80π﹣160 .

【考點】(衡水中考數學)相似三角形的判定與性質;勾股定理;正方形的性質.

【分析】首先連接AC,則可證得△AEM∽△CFM,根據相似三角形的對應邊成比例,即可求得EM與FM的長,然后由勾股定理求得AM與CM的長,則可求得正方形與圓的面積,則問題得解.

【解答】解:連接AC,

∵AE丄EF,EF丄FC,

∴∠E=∠F=90°,

∵∠AME=∠CMF,

∴△AEM∽△CFM,

∵AE=6,EF=8,FC=10,

∴EM=3,FM=5,

在Rt△AEM中,AM==3

在Rt△FCM中,CM==5

∴AC=8

在Rt△ABC中,AB=AC?sin45°=8?=4

∴S正方形ABCD=AB2=160,

圓的面積為:π?()2=80π,

∴正方形與其外接圓之間形成的陰影部分的面積為80π﹣160.

故答案為:80π﹣160.

 

20.如圖,金屬桿AB的中點C與一個直徑為12的圓環焊接并固定在一起,金屬桿的A端著地并且與地面成30°角.圓環沿著AD向D的方向滾動(無滑動)的距離為 2π 時B點恰好著地.

【考點】弧長的計算.

【分析】(衡水中考數學)滾動距離就是弧長,當金屬桿AB轉動到與地面平行時,對應的圓心角為30度,所以對應的圓心角一共是60度,根據弧長公式可得結果.

【解答】解:由題意可知,圓環在滾動過程中,圓心角轉動了60°,

所以圓環滾動的距離為=2π.

 

三、解答題(本大題共6個小題,共66分,解答應寫出文字說明、證明過程或演算步驟)

21.如圖,點A、B在數軸上,它們所對應的數分別是

(1)當x=1.5時,求AB的長;

(2)當點A到原點的距離比B到原點的距離多3,求x的值.

【考點】解分式方程;數軸.

【分析】(1)將x=1.5代入點A、點B的代數式,然后求出它們的值,再用點B表示的數減去點A表示的數,即可求得AB的長;

(2)根據題意可以列出相應的方程,從而可以解答本題.

【解答】解:(1)當x=1.5時,

=

=

∴AB=﹣1﹣(﹣4)=﹣1+4=3,

即AB的長為3;

(2)由題意可得,

解得,x=1.5,

經檢驗x=1.5是分式方程的解,

即x的值是1.5.

 

22.已知,如圖,DC∥AB,且DC=AB,E為AB的中點.

(1)求證:△AED≌△EBC;

(2)觀察圖形,在不添加輔助線的情況下,除△EBC外,請再寫出兩個與△AED的面積相等的三角形(直接寫出結果,不要求證明): △AEC,△ECD,△ACD .

【考點】平行四邊形的判定.

【分析】由DC∥AB,且DC=AB,E為AB的中點,可判定四邊形ADCE是平行四邊形,有CE=AD,CE∥AD?∠BEC=∠BAD,故可由SAS證得△BEC≌△EAD,在平行四邊形ADCE中,△AED,△AEC,△ECD,△AED都是等底等高的三角形,故它們的面積相等.

【解答】(1)證明:∵DC=AB,E為AB的中點,

∴CD=BE=AE.

又∵DC∥AB,

∴四邊形ADCE是平行四邊形.

∴CE=AD,CE∥AD.

∴∠BEC=∠BAD.

在△BEC和△EAD中,

∴△BEC≌△EAD(SAS).

 

(2)解:與△AED的面積相等的三角形有:△AEC,△ECD,△AED.

故答案為:△AEC,△ECD,△ACD.

 

23.某學校為了增強學生體質,決定開設以下體育課外活動項目:A.籃球? B.乒乓球C.羽毛球? D.足球,為了解學生最喜歡哪一種活動項目,隨機抽取了部分學生進行調查,并將調查結果繪制成了兩幅不完整的統計圖,請回答下列問題:

(1)這次被調查的學生共有 200 人;

(2)請你將條形統計圖(2)補充完整;

(3)在平時的乒乓球項目訓練中,甲、乙、丙、丁四人表現優秀,現決定從這四名同學中任選兩名參加乒乓球比賽,求恰好選中甲、乙兩位同學的概率(用樹狀圖或列表法解答)

【考點】條形統計圖;扇形統計圖;列表法與樹狀圖法.

【分析】(1)由喜歡籃球的人數除以所占的百分比即可求出總人數;

(2)由總人數減去喜歡A,B及D的人數求出喜歡C的人數,補全統計圖即可;

(3)根據題意列出表格,得出所有等可能的情況數,找出滿足題意的情況數,即可求出所求的概率.

【解答】解:(1)根據題意得:20÷=200(人),

則這次被調查的學生共有200人;

 

(2)補全圖形,如圖所示:

 

(3)列表如下:

 

﹣﹣﹣

(乙,甲)

(丙,甲)

(丁,甲)

(甲,乙)

﹣﹣﹣

(丙,乙)

(丁,乙)

(甲,丙)

(乙,丙)

﹣﹣﹣

(丁,丙)

(甲,丁)

(乙,丁)

(丙,丁)

﹣﹣﹣

所有等可能的結果為12種,其中符合要求的只有2種,

則P==

 

24.(衡水中考數學)函數y=(x>0)與y=(x>0)的圖象如圖所示,點P是y軸上的任意一點,直線x=t(t>0)分別與兩個函數圖象交于點Q,R,連接PQ,PR.

(1)用t表示PQ的長度,并判斷隨著t的值逐漸增大,RQ長度的變化情況;

(2)當t從小到大變化時,△PQR的面積是否發生變化?請說明理由;

(3)當t=1時,△PQR的周長是否發生變化?如果發生變化,當P點坐標為 (0,) 時,△PQR的周長最小,最小周長是 3+ ;如果不發生變化,請說明理由.

【考點】反比例函數綜合題.

【分析】(1)由于R和Q的橫坐標都是t,則利用反比例函數圖象上點的坐標特征可表示出它們的坐標,然后利用它們的縱坐標之差即可表示出RQ的長度,然后根據反比例函數的性質討論增減性;

(2)根據三角形面積公式易得S△PRQ=3,于是可判斷PQR的面積不發生變化

(3)當t=1時,易得Q(1,1),R(1,4),則RQ=3,作點R關于y軸的對稱點M,連結MQ,交y軸于P點,如圖,則M點的坐標為(﹣1,4),利用待定系數法求出直線MQ的解析式為y=﹣x+,易得P點坐標為(0,);然后根據兩點之間線段最短可判斷此時△PQR的周長最小,接著根據勾股定理計算出MQ,從而可得到△PQR的周長的最小值.

【解答】解:(1)當x=t時,y=,則Q(t,);

當x=t時,y==,則R(t,),

所以RQ==

當t>0時,RQ隨t的增大而減小;

(2)△PQR的面積不發生變化.理由如下:

∵S△PRQ=?RQ?h=××t=

∴,PQR的面積不發生變化;

(3)△PQR的周長發生變化.

當t=1時,Q(1,1),R(1,4),則RQ=3,

作點R關于y軸的對稱點M,連結MQ,交y軸于P點,如圖,則M點的坐標為(﹣1,4),

設直線MQ的解析式為y=kx+b,

把M(﹣1,4),Q(1,1)分別代入得,解得

∴直線MQ的解析式為y=﹣x+

當x=0時,y=﹣x+=

∴P點坐標為(0,);

∵PM=PR,

∴PR+PQ=PM+PQ=WQ,

∴此時△PQR的周長最小,

在Rt△MRQ中,∵RQ=3,RM=2,

∴MQ==

∴PQ+PR=MQ=

∴△PQR的周長的最小值為3+

故答案為(0,);3+

 

25.如圖,在直角坐標系中,過點P(x,0)作x軸的垂線分別交拋物線y=x2+2與直線y=﹣x于A,B兩點,以線段AB為對角線作正方形ADBC,已知點Q(a,b)為該拋物線上的點.

(1)寫出AB的長度關于x的函數關系式,并指出AB的最小值;

(2)若x=1,當點Q在正方形ADBC邊上(點A除外)時,求a的值.

(3)若a=﹣1時,當點Q在正方形ADBC的內部(包括邊界)時,求x的取值范圍.

【考點】(衡水中考數學)二次函數綜合題.

【分析】(1)由AB⊥x軸,表示出點A,B的坐標,進而求出AB的函數關系式,最后確定出它的最小值;

(2)先求得A、B的坐標,進而求得AB的長,根據正方形的性質,求得C、D的坐標,然后根據待定系數法求得直線AC的解析式,與拋物線聯立方程,解方程即可求得Q的坐標,從而求得a;

(3)分兩種情況:①當P在y軸的右側時,根據題意列出x+1=x2+2﹣3,x+1=﹣x+3;

②當P在y軸的左側時,則﹣x﹣1=x2+2﹣3,﹣x﹣1=﹣x+3;解方程即可求得.

【解答】解:(1)∵過點P(x,0)作x軸的垂線分別交拋物線y=x2+2與直線y=﹣x于A,B兩點,

∴A(x,x2+2),B(x,﹣x),

∴AB=x2+2﹣(﹣x)=x2+2+x=(x+)2+

∴當x=﹣時,AB的最小值為

(2)若x=1,則P(1,0),

∵過點P(1,0)作x軸的垂線分別交拋物線y=x2+2與直線y=﹣x于A,B兩點,

∴A(1,3),B(1,﹣),

∴AB=

∴AB的一半為

∵以線段AB為對角線作正方形ADBC,

∴C,D的縱坐標為3﹣=

∵點C的橫坐標為1﹣=﹣

∴C(﹣),

∵A(1,3),

∴直線AC的解析式為y=x+2,

∴與拋物線y=x2+2聯立得

解得(舍去),

∴Q(0,2),

∵點Q(a,b)為該拋物線上的點.

∴a=0.

(3)若a=﹣1,則Q的坐標為(﹣1,3),

①(衡水中考數學)當P在y軸的右側時,

∴x+1=x2+2﹣3,解得x1=2,x2=0(舍去),

x+1=﹣x+3,解得x=4,

∴2≤x≤4;

②當P在y軸的左側時,

則﹣x﹣1=x2+2﹣3,解得x=﹣1,

﹣x﹣1=﹣x+3,解得x=﹣

∴﹣≤x≤﹣1;

綜上,x的取值范圍是2≤x≤4或﹣≤x≤﹣1.

 

26.對于一個圓和一個正方形給出如下定義:若圓上存在到此正方形四條邊距離都相等的點,則稱這個圓是該正方形的“等距圓”.

如圖1,在平面直角坐標系xOy中,正方形ABCD的頂點A的坐標為(2,4),頂點C、D在x軸上,且點C在點D的左側.

(1)當r=2時,在P1(0,2),P2(﹣2,4),P3(4,2)中可以成為正方形ABCD的“等距圓”的圓心的是 P2(﹣2,4) ;

(2)當P點坐標為(﹣3,6),則當⊙P的半徑r是多少時,⊙P是正方形ABCD的“等距圓”,試判斷此時⊙P與直線AC的位置關系,并說明理由.

(3)如圖2,在正方形ABCD所在平面直角坐標系xOy中,正方形EFGH的頂點F的坐標為(6,2),頂點E、H在y軸上,且點H在點E的上方.

①將正方形ABCD繞著點D旋轉一周,在旋轉的過程中,線段HF上沒有一個點能成為它的“等距圓”的圓心,直接寫出r的取值范圍是 0<r<或r>2 .

②若⊙P同時為上述兩個正方形的“等距圓”,且與BC所在直線相切,求⊙P的圓心P的坐標.

【考點】(衡水中考數學)圓的綜合題.

【分析】(1)根據“等距圓”的定義,可知只要圓經過正方形的中心,即是正方形的“等距圓”,也就是說圓心與正方形中心的距離等于圓的半徑即可,從而可以判斷哪個點可以成為正方形ABCD的“等距圓”的圓心,本題得以解決;

(2)根據題意可知,只要求出點P與正方形ABCD的中心的距離即可求得半徑r的長度,連接PE,可以得到直線PE的解析式,看點B是否在此直線上,由BE與直線AC的關心可以判斷PE與直線AC的關系,本題得以解決;

(3)①根據題意,可以做出合適的輔助線,畫出相應的圖形,然后靈活轉化,可以求得相應的r的取值范圍,本題得以解決;

②根據題意,可以得到點P滿足的條件,列出形應的二元一次方程組,從而可以求得點P的坐標.

【解答】解:(1)連接AC、BD相交于點M,如右圖1所示,

∵四邊形ABCD是正方形,

∴點M是正方形ABCD的中心,到四邊的距離相等,

∴⊙P一定過點M,

∵正方形ABCD的頂點A的坐標為(2,4),頂點C、D在x軸上,且點C在點D的左側.

∴點M(0,2),

設⊙P的圓心坐標是(x,y),

將P1(0,2),P2(﹣2,4),P3(4,2)分別代入上面的方程,只有P2(﹣2,4)成立,

故答案為:P2(﹣2,4);

(2)(衡水中考數學)由題意可得,

點M的坐標為(0,2),點P(﹣3,6),

∴r=

即當P點坐標為(﹣3,6),則當⊙P的半徑r是5時,⊙P是正方形ABCD的“等距圓”;

此時⊙P與直線AC的位置關系是相交,

理由:∵正方形ABCD的頂點A的坐標為(2,4),頂點C、D在x軸上,且點C在點D的左側,

∴點C(﹣2,0),

設過點A(2,4),點C(﹣2,0)的直線的解析式為y=kx+b,

解得,

即直線AC的解析式為:y=x+2,

∴點P(﹣3,6)到直線AC的距離為: =

<5,

∴此時⊙P與直線AC的位置關系是相交;

(3)連接DH,作DT⊥HF于點T,以點D為圓心,DE長為半徑作圓,交DT于點E2,交HD的延長線于點E1,如右圖2所示,

①設過點H(0,8),F(2,6)的直線的解析式為y=kx+b,

,得

即直線HF的解析式為:y=﹣x+8,

∵HF⊥DT,D(2,0),

∴設直線DT所在直線的解析為:y=x+c,

則0=2+c得c=﹣2,

即直線DT所在的直線解析為:y=x﹣2,

∵點T是直線HT與直線DT的交點,

解得(衡水中考數學),

即點T的坐標為(3,5),

∴DT=

又∵DE2=DE=

∴E2T=DT﹣DE2==

∴當0<r<時,線段HF上沒有一個點能成為它的“等距圓”的圓心;

∵D(0,2),H(0,8),

∴DH=

又∵DE1=DE=

∴HE1=2+2

∴當r>2+2時,線段HF上沒有一個點能成為它的“等距圓”的圓心;

故答案為:0<r<或r>2+2

②設點P的坐標為(x,y),連接HF、EG交于點N,則點N為正方形EFGH的中心,如右上圖2所示,

∵點E(0,2),N(3,5),點C(﹣2,0),點B(﹣2,4),⊙P同時為上述兩個正方形的“等距圓”,且與BC所在直線相切,

解得,

即⊙P的圓心P的坐標是(5+2,﹣2)或(5﹣2,2).

 

 

第1頁(共27頁)

 

查看更多【衡水數學試題】內容
成人国产免费电影_夜色福利刺激_蜜臀av性久久久久蜜臀aⅴ四虎_国产区视频在线观看

                亚洲精品中文在线影院| 一区二区三区在线视频免费观看| 国产在线播放一区三区四| 精品成a人在线观看| 狠狠色丁香久久婷婷综合丁香| 欧美成人vps| 国产福利视频一区二区三区| 国产福利一区在线观看| 中文成人综合网| 99精品热视频| 亚洲va韩国va欧美va精品| 777奇米四色成人影色区| 国产最新精品精品你懂的| 国产三级一区二区三区| 99re在线视频这里只有精品| 亚洲午夜一二三区视频| 日韩一区二区三区视频在线观看 | 亚洲一区二区视频在线| 欧美一区二区三区影视| 国产一区二区久久| 亚洲欧美视频在线观看| 欧美久久久久久蜜桃| 国内偷窥港台综合视频在线播放| 欧美极品xxx| 欧美在线一区二区三区| 久久99精品久久久久久久久久久久 | 国产精品国产三级国产aⅴ原创 | 91超碰这里只有精品国产| 九九九久久久精品| 亚洲欧美视频在线观看| 91精品国产综合久久香蕉的特点| 国产精品一区二区久久不卡| 99久久精品免费看| 日日夜夜免费精品| 国产精品视频免费| 欧美猛男超大videosgay| 国产一区二区三区视频在线播放| 亚洲毛片av在线| 日韩欧美在线综合网| gogo大胆日本视频一区| 日韩国产欧美在线视频| 国产精品久久久久影院色老大| 欧美三级视频在线播放| 国产精品一区二区无线| 亚洲动漫第一页| 国产亚洲成av人在线观看导航| 欧美三级日韩三级| 国产不卡视频在线观看| 天天影视色香欲综合网老头| 国产色综合一区| 在线不卡中文字幕播放| 成人app在线| 久久国产精品露脸对白| 亚洲精品国产品国语在线app| 精品精品国产高清a毛片牛牛| 色妹子一区二区| 国产伦精品一区二区三区免费| 亚洲一区在线看| 中文一区在线播放| 日韩欧美一二三| 日本乱人伦一区| 国产91丝袜在线播放0| 日韩激情一二三区| 亚洲三级在线免费观看| 久久免费看少妇高潮| 午夜精品福利一区二区三区av| 中文字幕第一区二区| 日韩一级在线观看| 欧美视频一区二区三区| 99久久免费国产| 国产精品羞羞答答xxdd| 日韩高清中文字幕一区| 亚洲综合免费观看高清在线观看| 欧美激情一区在线| 日韩欧美国产一区二区三区 | 色悠久久久久综合欧美99| 国产福利一区二区三区视频在线| 日本欧美一区二区在线观看| 一区二区三区免费在线观看| 国产精品免费免费| 久久精品免费在线观看| 日韩一区二区三区视频在线| 欧美色手机在线观看| 91同城在线观看| 成人午夜av在线| 国产一区二区三区免费观看 | 日韩影院在线观看| 亚洲综合色视频| 亚洲欧美国产三级| 国产精品久久久久久户外露出| 久久亚洲二区三区| 精品国产91乱码一区二区三区| 91精品国产免费| 91麻豆精品国产自产在线| 欧美色男人天堂| 欧美性生活影院| 91黄色激情网站| 日本高清视频一区二区| 99re视频精品| 91小视频在线| 91免费看`日韩一区二区| 成人福利电影精品一区二区在线观看| 国产一区二区三区四区五区美女| 麻豆成人av在线| 麻豆久久一区二区| 久久国产夜色精品鲁鲁99| 奇米一区二区三区| 蜜臀av性久久久久蜜臀aⅴ四虎| 视频一区欧美精品| 日韩影院精彩在线| 免费在线看成人av| 久久精品国产成人一区二区三区| 免费视频最近日韩| 久久se精品一区二区| 老司机免费视频一区二区| 久久国产三级精品| 国产自产高清不卡| 国产高清精品在线| 不卡视频免费播放| 99精品视频在线免费观看| 99精品热视频| 在线观看成人小视频| 欧美日韩成人激情| 欧美一区二区免费视频| 日韩欧美黄色影院| 丁香亚洲综合激情啪啪综合| 国产激情91久久精品导航| 国产成人在线视频网址| 成人精品免费视频| 91丨九色丨蝌蚪富婆spa| 欧美视频第二页| 欧美一区二区成人| 久久免费视频色| 国产精品传媒入口麻豆| 一区二区三区国产精华| 首页国产欧美久久| 精品一区二区久久| 成人精品小蝌蚪| 欧美综合在线视频| 日韩一区二区三区电影在线观看 | 久久影音资源网| 国产精品盗摄一区二区三区| 一区二区三区毛片| 日av在线不卡| 国产精品888| 91啦中文在线观看| 7777女厕盗摄久久久| 久久久精品tv| 亚洲欧美国产高清| 奇米色一区二区三区四区| 国产一区二区91| 91麻豆成人久久精品二区三区| 欧美精品久久久久久久久老牛影院| 欧美大片拔萝卜| 国产精品国产自产拍高清av | 紧缚捆绑精品一区二区| 成人av免费在线观看| 欧美三区在线视频| 久久精品这里都是精品| 亚洲欧美日韩小说| 麻豆国产精品777777在线| jlzzjlzz欧美大全| 91精品欧美福利在线观看| 久久久久国产一区二区三区四区| 最新热久久免费视频| 日韩av中文字幕一区二区三区| 国产精品亚洲人在线观看| 欧美综合在线视频| 久久久亚洲精品石原莉奈| 亚洲伊人色欲综合网| 国产精品一区在线观看乱码| 日本久久一区二区| 久久影音资源网| 亚洲地区一二三色| 成人性生交大片免费看中文| 欧美日韩美少妇| 中国av一区二区三区| 三级一区在线视频先锋 | 国产亚洲精品精华液| 亚洲国产综合在线| 国产成人高清在线| 欧美精品在线观看一区二区| 成人毛片老司机大片| 91麻豆精品国产自产在线| 成人免费在线视频观看| 裸体歌舞表演一区二区| 日本道免费精品一区二区三区| 精品国产髙清在线看国产毛片| 一区二区三区精品| 国产成人丝袜美腿| 欧美一级在线视频| 亚洲精品视频在线看| 国产麻豆成人传媒免费观看| 欧美日韩国产首页在线观看| 国产精品视频看| 激情五月播播久久久精品| 欧美日韩国产综合视频在线观看| 国产精品短视频| 精品在线免费视频| 欧美日韩不卡一区|