三角函數(shù)的和差化積公式為三角函數(shù)的一個(gè)重要公式,下面總結(jié)了三角函數(shù)的和差化積公式,供大家參考。

sinA+sinB=2sin[(A+B)/2]cos[(A-B)/2]
sinA-sinB=2cos[(A+B)/2]sin[(A-B)/2]
cosA+cosB=2cos[(A+B)/2]cos[(A-B)/2]
cosA-cosB=-2sin[(A+B)/2]sin[(A-B)/2]
tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB)
口訣:正加正,正在前,余加余,余并肩,正減正,余在前,余減余,負(fù)正弦。
首先,我們知道sin(a+b)=sina*cosb+cosa*sinb,sin(a-b)=sina*cosb-cosa*sinb
我們把兩式相加就得到sin(a+b)+sin(a-b)=2sina*cosb
所以,sina*cosb=(sin(a+b)+sin(a-b))/2
同理,若把兩式相減,就得到cosa*sinb=(sin(a+b)-sin(a-b))/2
同樣的,我們還知道cos(a+b)=cosa*cosb-sina*sinb,cos(a-b)=cosa*cosb+sina*sinb
所以,把兩式相加,我們就可以得到cos(a+b)+cos(a-b)=2cosa*cosb
所以我們就得到,cosa*cosb=(cos(a+b)+cos(a-b))/2
同理,兩式相減我們就得到sina*sinb=-(cos(a+b)-cos(a-b))/2
這樣,我們就得到了積化和差的四個(gè)公式:
sina*cosb=(sin(a+b)+sin(a-b))/2
cosa*sinb=(sin(a+b)-sin(a-b))/2
cosa*cosb=(cos(a+b)+cos(a-b))/2
sina*sinb=-(cos(a+b)-cos(a-b))/2
有了積化和差的四個(gè)公式以后,我們只需一個(gè)變形,就可以得到和差化積的四個(gè)公式.
我們把上述四個(gè)公式中的a+b設(shè)為x,a-b設(shè)為y,那么a=(x+y)/2,b=(x-y)/2
把a(bǔ),b分別用x,y表示就可以得到和差化積的四個(gè)公式:
sinx+siny=2sin((x+y)/2)*cos((x-y)/2)
sinx-siny=2cos((x+y)/2)*sin((x-y)/2)
cosx+cosy=2cos((x+y)/2)*cos((x-y)/2)
cosx-cosy=-2sin((x+y)/2)*sin((x-y)/2)

三角函數(shù)求導(dǎo)公式:(sinx)' = cosx;(cosx)' = - sinx;(tanx)'=1/(cosx)^2=(secx)^2=1...

1、利用三角函數(shù)的有界性,利用三角函數(shù)的有界性如|sinx|≤1,|cosx|≤1來求三角函數(shù)的最值。2、利用三角函數(shù)的增減性,如果f(x)...

三角函數(shù)公式不是只能用于直角三角形,三角函數(shù)公式對于任意角度,都有其值;相對應(yīng)的函數(shù)值。只是對于直角三角形,三角函數(shù)有一個(gè)明顯的推理工程,便...

三角函數(shù)是初中數(shù)學(xué)的重要內(nèi)容,同學(xué)們一定要學(xué)好三角函數(shù)。數(shù)學(xué)上的很多定理,你要把它記下來很難,但你要是把這個(gè)定理求證一遍,它就活靈活現(xiàn)地展現(xiàn)...

三角函數(shù)是初中數(shù)學(xué)的重要知識點(diǎn),我們一定要仔細(xì)研究,好好學(xué)習(xí)。任意角的集合與一個(gè)比值的集合變量之間的映射就是三角函數(shù)的本質(zhì)。通常用平面直角坐...

實(shí)際上三角函數(shù)這塊內(nèi)容還是比較好學(xué)的,只要掌握了公式的意義,能夠熟練記憶這些公式,在考題中很容易就找到解答方法。希望同學(xué)們在日常的學(xué)習(xí)中要打...

三角函數(shù)是初中數(shù)學(xué)重要知識點(diǎn),其中包括銳角三角函數(shù)定義、三角函數(shù)關(guān)系、倍角公式、三角和的公式等。我們在學(xué)習(xí)的過程中要在理解的基礎(chǔ)上加以記憶,...

本文中,小編為大家整理了一些初中三角函數(shù)入門知識點(diǎn),一起來看看吧!